Ideal transformer with sinusoidal voltage source.

$$
a=N_{1} / N_{2}
$$

defines the turns ratio.

- \bar{z} referred to the primary side: $\bar{v}_{0} \stackrel{\sim}{\square} a^{2} \bar{z}$.
- Computing the max. flux in the ideal transformer:

$$
\begin{aligned}
v_{0}(t)=N_{1} \frac{d \phi}{d t} \Rightarrow \phi(t) & =\frac{1}{N_{1}} \int v_{0}(t) d t \\
& =\frac{1}{N_{1}} \cdot \int \sqrt{2}\left|\bar{v}_{0}\right| \cos \left(\omega t+\left\langle\bar{v}_{0}\right)\right. \\
& =\frac{\sqrt{2}\left|\bar{v}_{0}\right|}{N_{1}} \frac{\sin \omega t}{\omega}
\end{aligned}
$$

$\therefore \phi_{\text {max }}=\frac{\sqrt{2}\left|\bar{V}_{0}\right|}{N_{1} 2 \pi f}, \quad$ where $f=$ frequency

Written differently,

$$
\begin{aligned}
\left|\bar{V}_{0}\right| & (\text { RMS value of voltage }) \\
& =\sqrt{2} \pi N_{1} f \phi_{\max } . \\
& =4.44 N_{1} f \phi_{\max } .
\end{aligned}
$$

... important to remember.
An example: A $480 \mathrm{~V} / 120 \mathrm{~V}$ transformer supplies a resistive load a power of 9.6 kVA at its rated voltage. What is the resistance of the load referred to the primary side?
New term: "rated voltage"
Usually, all equipments come with a "rating" that describes the maximum, and roughly, the normal level of that quantity for that equipment, much like speed limit ow a road!

- $480 \mathrm{~V} / 120 \mathrm{~V}$ transformer

$$
\Rightarrow N_{1} / N_{2}=480 / 120=4: 1 .
$$

\Rightarrow voltage across load = the rated voltage ow the secondary side

$$
=120 \mathrm{~V} .
$$

- Power drawn $=9.6 \mathrm{kVA}$, Voltage $=120 \mathrm{~V}$.

$$
\Rightarrow R=\frac{(120 \mathrm{~V})^{2}}{9.6 \mathrm{kVA}}=1.5 \Omega .
$$

- Referred to the primary side, that resistance is $\left(N_{1} / N_{2}\right)^{2} \cdot R=4^{2} \times 1.5 \Omega$

$$
=24 \Omega
$$

Representing a real transformer using a combination of inductors \& an ideal transformer.

- Consider a transformer described by a coupled coil representation:

Notice that we have included resistances $R_{1} \&_{1} R_{2}$ to denote the resistances in the wires.

- We will show that if is equivalent to

- Agenda: To show these two circuits are eq.

- Method: ©10 dd a source and a load.
(2) Write down "loop equations" or KVL for both.
(3) Show they are the same.

Circuit 1:

- $v_{0}-i_{1} R_{1}=v_{1}$
- $v_{2}-i_{2} R_{2}-i_{2} R_{2}=0$
- $v_{1}=L_{1} \frac{d}{d t}\left(i_{1}\right)+M \frac{d}{d t}\left(-i_{2}\right)$
- $V_{2}=L_{2} \frac{d}{d t}\left(-i_{2}\right)+M \frac{d}{d t}\left(i_{1}\right)$.

Eliminating $v_{1} \& v_{2}$, we get

$$
\begin{aligned}
& 0 v_{0}-i_{1} R_{1}-L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}=0 \\
& 0-\frac{L_{2}}{d i_{2}} \\
& d t
\end{aligned} \frac{M i_{1}}{d t}-i_{2} R_{2}-i_{2} R_{L}=0 .
$$

Circuit 2:

KVL for this circuit:

$$
\begin{aligned}
& \cdot v_{0}-i_{1} R_{1}-\left(L_{1}-a M\right) \frac{d i_{1}}{d t}-(a M) \frac{d}{d t}\left(i_{1}-\frac{i_{2}}{a}\right)=0 \\
& \cdot(a M) \frac{d}{d t}\left(i_{1}-\frac{i_{2}}{a}\right)-\left(a^{2} L_{2}-a M\right) \frac{d}{d t}\left(i_{2} / a\right)-\frac{i_{2}}{a} \cdot a^{2} R_{2}=v_{1} \\
& \cdot V_{1} / v_{2}=a . \\
& \cdot V_{2}=i_{2} R_{L} .
\end{aligned}
$$

- Simplify the first $e q^{n}$.

$$
v_{0}-i_{1} R_{1}-\left(L_{1}-a M\right) \frac{d i_{1}}{d t}-(a M) \frac{d}{d t}\left(i_{1}-\frac{i_{2}}{a}\right)=0
$$

if $v_{0}-i_{1} R_{1}-L \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}=0$.

- Let's eliminate $v_{1} \xi_{1} v_{2}$ from the second eqn.

Notice that $v_{1}=a i_{2} R_{L}$. Then, second eq" becomes $(a M) \frac{d}{d t}\left(i_{1}-\frac{i_{2}}{a}\right)-\left(a^{2} l_{2}-a M\right) \frac{d}{d t}\left(i_{2} / a\right)-a i_{2} R_{2}=a i_{2} R_{L}$
iff $\frac{d i_{1}}{d t}(a M)+\frac{d i_{2}}{d t}\left(-M-a L_{2}+M\right)$

$$
-a i_{2} R_{2}-a i_{2} R_{2}=0
$$

Dividing by ' a ' throughout, we get

$$
M \frac{d_{i_{1}}}{d t}-L_{2} \frac{d i_{2}}{d t}-i_{2} R_{2}-i_{2} R_{L}=0
$$

\therefore Circuit 2 yields

$$
\begin{aligned}
& v_{0}-i_{1} R_{1}-L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}=0 . \\
& M \frac{d i_{1}}{d t}-L_{2} \frac{d i_{2}}{d t}-i_{2} R_{2}-i_{2} R_{L}=0 .
\end{aligned}
$$

Compare it with that derived from circuit 1, reproduced below:

$$
\begin{aligned}
& 0 v_{0}-i_{1} R_{1}-L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}=0 \\
& 0-L_{2} \frac{d i_{2}}{d t}+M \frac{d i_{1}}{d t}-i_{2} R_{2}-i_{2} R_{L}=0 .
\end{aligned}
$$

They match!
Therefore, they are equivalput civcerits.

- A real transformer therefore admits two equivalent representations:-
- A coupled coil representation
- An ideal transformer + inductor representation!
Q. Is there any advantage of the ideal transformer + inductor representation?

Transformer disappears \Rightarrow simplifies analysis.

